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Introduction

● Pictorial history of the Universe

Planck
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Introduction

● What we would like to know
– Expansion history H(z) of background Universe

– Origin and evolution of perturbations
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Perturbations

● Origin of initial density perturbations in the 
Universe ?
– Inflation - most popular scenario

– Determining physics & energy scale (103 – 1019 GeV) 
of inflation is (one) holy grail of cosmology
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Perturbations

● Origin of initial density perturbations in the 
Universe ?
– Inflation - most popular scenario

– Determining physics & energy scale (103 – 1019 GeV) 
of inflation is (one) holy grail of cosmology

● Evolution of perturbations
– CMB -> snapshot at z~1100

– Subsequent evolution determined by gravity           
--> probe dark matter, General Relativity
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Perturbations

● Origin of initial density perturbations in the 
Universe ?
– Inflation - most popular scenario

– Determining physics & energy scale (103 – 1019 GeV) 
of inflation is (one) holy grail of cosmology

● Evolution of perturbations
– CMB -> snapshot at z~1100

– Subsequent evolution determined by gravity           
--> probe dark matter, General Relativity

Focus of this talk
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Aside: a new approach to 
weak lensing

● Standard approach: shear γ 
– measured through galaxy shapes

● Idea: measure magnification (convergence κ)
– using galaxy fluxes/sizes

● Additional signal-to-noise / lensing information
– κ and γ measure different quantities:

Jain 02; FS et al; 1111.3679

Σ: projected surface mass density
·(~r) = §(~r)=§crit

°(r) =
¡
¹§(< r) ¡ §(r)

¢
=§crit
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Magnification effect
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Magnification effect

m

ln
d

cut

cut

Small, 
faint

Large, 
bright

Sizes:

ln d = ln d0 + ´ ·

Fluxes:

m = m0 + q ·

´ ¼ 1; q ¼ ¡2:1
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Estimator for Σ (κ)
● Approximate unlensed distribution as bivariate 

Gaussian in ln d, m

FS et al; 1111.3679



12

Estimator for Σ (κ)
● Approximate unlensed distribution as bivariate 

Gaussian in ln d, m
– → Gaussian likelihood for κ

● Here: d = RRG variable width Gaussian filtered                   
         m = SExtractor F814w

● Both from Hubble ACS data

FS et al; 1111.3679
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Estimator for Σ (κ)
● Approximate unlensed distribution as bivariate 

Gaussian in ln d, m
– → Gaussian likelihood for κ

● Here: d = RRG variable width Gaussian filtered                   
         m = SExtractor F814w

● Both from Hubble ACS data

– Take into account lensing efficiency & “lensing bias”, 
redshift, size, and magnitude measurement errors

FS et al; 1111.3679
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Estimator for Σ (κ)
● Approximate unlensed distribution as bivariate 

Gaussian in ln d, m
– → Gaussian likelihood for κ

● Here: d = RRG variable width Gaussian filtered                   
         m = SExtractor F814w

● Both from Hubble ACS data

– Take into account lensing efficiency & “lensing bias”, 
redshift, size, and magnitude measurement errors

● Estimator does not use number density of 
sources

FS et al; 1111.3679
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Magnification around X-ray 
groups in COSMOS

● Stacked group sample z=0.2-0.6

Detection significance:
~4σ within r < 1 Mpc
~40% of shear

FS et al; 1111.3679
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Inflation

● Phase of exponential expansion
– “almost-de Sitter”, driven e.g. by

– Solves problems of flatness and “superhorizon” 
correlations

V (Á)
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Inflation

● Phase of exponential expansion
– “almost-de Sitter”, driven e.g. by

– Solves problems of flatness and “superhorizon” 
correlations

V (Á)

Today

CMB
(last scattering)

time

Comoving 
horizon

Scales observable today

1=(aH)
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Inflation

● Phase of exponential expansion
– “almost-de Sitter”, driven e.g. by

– Solves problems of flatness and “superhorizon” 
correlations

V (Á)

Today

CMB
(last scattering)

time

Comoving 
horizon

Scales observable today

Horizon 
during 
inflation

1=(aH)
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Perturbations from Inflation

● Quantum fluctuations “freeze” once outside 
the horizon
– Analogous to Hawking radiation

– We observe them once they re-enter the horizon

Re-enter horizon 
and become 
observable here

time

Comoving 
horizon

Fluctuations 
produced at 
horizon 
crossing

1=(aH)
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Perturbations from Inflation

● Generic prediction: 
– almost-Gaussian fluctuations

– smooth, almost scale-invariant power spectrum 
(two-point correlation)
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Perturbations from Inflation

● Generic prediction: 
– almost-Gaussian fluctuations

– smooth, almost scale-invariant power spectrum 
(two-point correlation)

● All information* on inflation is encoded in 
departures from Gaussianity & scale-invariance
– So far: one number

* in scalar modes. There 
might be detectable 
gravitational waves. 

ns ¡ 1 ¼ ¡0:04 § 0:01
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Perturbations from Inflation

● Departures from Gaussianity (= non-Gaussianity) 
in principle contains much more information
– Amount and form of NG depends on detailed physics 

of inflation:
● Inflaton interactions, sound speed, single-field vs multi-field, 

initial quantum state, ...
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Perturbations from Inflation

● Departures from Gaussianity (= non-Gaussianity) 
in principle contains much more information
– Amount and form of NG depends on detailed physics 

of inflation:
● Inflaton interactions, sound speed, single-field vs multi-field, 

initial quantum state, ...

● Goal of this talk: describe how we can measure 
this from galaxy surveys
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Motivation: Halo clustering 
with local NG

● Effect on halo power spectrum from simulations

– Current                                                         
constraints                                                              
from SDSS:

– Comparable to                                                       
CMB constraints

Desjacques & Seljak

jf locNLj . 90

Halo power spectra

Halo-matter cross spectra

¢Pg(k)

Pg(k)
= 2

¢b(k)

b
/ k¡2
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Statistical description

● A Gaussian field  φ is completely described 
by its power spectrum:

– Different Fourier modes are uncorrelated

hÁ(~k)Á(~k0)i = (2¼)3±D(~k + ~k0)PÁ(k)



26

Statistical description

● A Gaussian field  φ is completely described 
by its power spectrum:

– Different Fourier modes are uncorrelated

–               Bardeen potential during matter 
domination = Newtonian potential on large 
scales

hÁ(~k)Á(~k0)i = (2¼)3±D(~k + ~k0)PÁ(k)

Á = 3³=5
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Statistical description

● A Gaussian field  φ is completely described 
by its power spectrum:

● In non-Gaussian (NG) case, all higher point 
correlations non-zero
– However,                 → perturbative expansion

hÁ(~k)Á(~k0)i = (2¼)3±D(~k + ~k0)PÁ(k)

Á » 10¡5
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Describing Non-Gaussianity

● Either via bispectrum

hÁ̂(~k1)Á̂(~k2)Á̂(~k3)i = (2¼)3±D(~k1 + ~k2 + ~k3)BÁ(k1; k2; k3)
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● Either via bispectrum

– Used for CMB constraints

hÁ̂(~k1)Á̂(~k2)Á̂(~k3)i = (2¼)3±D(~k1 + ~k2 + ~k3)BÁ(k1; k2; k3)

Describing Non-Gaussianity
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● Either via bispectrum

– Used for CMB constraints

● Or via field redefinition

hÁ̂(~k1)Á̂(~k2)Á̂(~k3)i = (2¼)3±D(~k1 + ~k2 + ~k3)BÁ(k1; k2; k3)

Á̂(~k) = Á(~k) + fNL

Z
d3~k1
(2¼)3

!(~k1; ~k ¡ ~k1)Á(~k1)Á(~k ¡ ~k1)

Gaussian random field

Describing Non-Gaussianity

Physical, non-Gaussian field
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● Either via bispectrum

– Used for CMB constraints

● Or via field redefinition

hÁ̂(~k1)Á̂(~k2)Á̂(~k3)i = (2¼)3±D(~k1 + ~k2 + ~k3)BÁ(k1; k2; k3)

Á̂(~k) = Á(~k) + fNL

Z
d3~k1
(2¼)3

!(~k1; ~k ¡ ~k1)Á(~k1)Á(~k ¡ ~k1)

Amplitude parameter

Describing Non-Gaussianity

“Shape”
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● Either via bispectrum

– Used for CMB constraints

● Or via field redefinition

– Used for initializing N-body simulations

hÁ̂(~k1)Á̂(~k2)Á̂(~k3)i = (2¼)3±D(~k1 + ~k2 + ~k3)BÁ(k1; k2; k3)

Á̂(~k) = Á(~k) + fNL

Z
d3~k1
(2¼)3

!(~k1; ~k ¡ ~k1)Á(~k1)Á(~k ¡ ~k1)

Describing Non-Gaussianity
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● Either via bispectrum

– Used for CMB constraints

● Or via field redefinition

– Local model:

hÁ̂(~k1)Á̂(~k2)Á̂(~k3)i = (2¼)3±D(~k1 + ~k2 + ~k3)BÁ(k1; k2; k3)

Á̂(~k) = Á(~k) + fNL

Z
d3~k1
(2¼)3

!(~k1; ~k ¡ ~k1)Á(~k1)Á(~k ¡ ~k1)

Describing Non-Gaussianity

Á̂(~x) = Á(~x) + fNLÁ
2(~x)

, !(~k1; ~k2) = 1
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Large Scale Structure

(dramatization)

We observe this



35

Large Scale Structure

(dramatization)

We want to infer thisWe observe this
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Large Scale Structure

● Key theoretical problem: 
– how to map initial linear fluctuations to observed 

non-linear density field of tracers (on large scales)

(dramatization)

We observe this We want to infer this
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Large Scale Structure

● We need to map
– linear matter overdensity 

– to galaxy overdensity ±g

± =
±½m
¹½m
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Large Scale Structure

● We need to map
– linear matter overdensity 

– to galaxy overdensity

● In the following, focus on halos:
– collapsed, virialized dark matter structures

– Easy comparison with N-body simulations

±g

± =
±½m
¹½m
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Peak-Background Split (PBS)

● Write perturbations* as: ± = ±l + ±s; Á = Ál + Ás; :::

(initial, linear)

*Work in synchronous gauge
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Peak-Background Split (PBS)

● Write perturbations* as: ± = ±l + ±s; Á = Ál + Ás; :::

“l”: scales on which clustering is measured

“s”: scales which govern halo formation

(initial, linear)

*Work in synchronous gauge
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Peak-Background Split (PBS)

● Write perturbations as:

● Definition of bias:

± = ±l + ±s; Á = Ál + Ás; :::

b1 =
@ lnnh
@±l

¡ 1
Lagrangian bias

: halo number density per ln Mnh
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Peak-Background Split (PBS)

● Write perturbations as:

● Definition of bias:

– Halo power spectrum:

± = ±l + ±s; Á = Ál + Ás; :::

b1 =
@ lnnh
@±l

¡ 1
Lagrangian bias

corrections relevant 
on small scales

Ph(k) = b21 P (k) + :::
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Peak-Background Split (PBS)

● Write perturbations as:

● Definition of bias:

– Halo power spectrum:

–      depends on       and matter power spectrum
● Simplest case: through variance on mass scale M,
● assume universal mass function for explicit expressions

± = ±l + ±s; Á = Ál + Ás; :::

b1 =
@ lnnh
@±l

¡ 1
Lagrangian bias

corrections relevant 
on small scales

Ph(k) = b21 P (k) + :::

nh ½m;l

¾2M
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Halo Bias in PBS

● Large-scale δ changes collapse threshold:

Mo & White 96±c ! ±c ¡ ±l ) b1 = ¡@ lnnh
@±c



45

Halo Bias in PBS

● Large-scale δ changes collapse threshold:

Mo & White 96

± ±c

x

±c ! ±c ¡ ±l ) b1 = ¡@ lnnh
@±c

Density field smoothed on 
(Lagrangian) scale of halos
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Halo Bias in PBS

● Large-scale δ changes collapse threshold:

Mo & White 96

x

± ±c

± + ±l

±c ! ±c ¡ ±l ) b1 = ¡@ lnnh
@±c

Density field smoothed on 
(Lagrangian) scale of halos
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Non-Gaussianity and PBS

● Consider local non-Gaussianity:

Á̂(~x) = Á(~x) + fNLÁ
2(~x)
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Non-Gaussianity and PBS

● Consider local non-Gaussianity:

● Use Poisson equation, and do l-s-split:

Á̂(~x) = Á(~x) + fNLÁ
2(~x)

) ±̂s = ±s(1 + 2fNLÁ)
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Non-Gaussianity and PBS

● Consider local non-Gaussianity:

● Use Poisson equation, and do l-s-split:

● Small-scale density field is rescaled by (long-
wavelength) potential perturbations
– Variance on mass scale M:

Á̂(~x) = Á(~x) + fNLÁ
2(~x)

) ±̂s = ±s(1 + 2fNLÁ)

¾̂2M (~x) = ¾2M [1 + 4fNLÁ(~x)]

Dalal et al,
Slosar et al
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Non-Gaussianity and PBS

±c±

x

¾̂2M (~x) = ¾2M [1 + 4fNLÁ(~x)]
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Non-Gaussianity and PBS

fNLÁl > 0

± ±c

x

¾̂2M (~x) = ¾2M [1 + 4fNLÁ(~x)]
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General quadratic NG

● Straightforward to generalize for any 
quadratic non-Gaussianity:

Á̂(k) = Á(k) + fNL

Z
! ÁÁ

FS & Kamionkowski
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General quadratic NG

● Straightforward to generalize for any 
quadratic non-Gaussianity:

(for a single long-wavelength mode k)

FS & Kamionkowski

Tophat filter of scale M

Á̂(k) = Á(k) + fNL

Z
! ÁÁ

) ¾̂2M = ¾2M + 4fNL¾
2
!M (k)Á(k)

¾2!M (k) ´
Z
d3ks
(2¼)3

!(~k;~ks)W
2
M (ks)P (ks)

FS & Kamionkowski
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General quadratic NG

● Straightforward to generalize for any 
quadratic non-Gaussianity:

– Note: coupling of potential with density in general 
depends on k and M

(for a single long-wavelength mode k)

FS & Kamionkowski

Tophat filter of scale M

Á̂(k) = Á(k) + fNL

Z
! ÁÁ

) ¾̂2M = ¾2M + 4fNL¾
2
!M (k)Á(k)

¾2!M (k) ´
Z
d3ks
(2¼)3

!(~k;~ks)W
2
M (ks)P (ks)
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Non-Gaussian halo bias

FS & Kamionkowski

● Just a matter of chain rule...
– In standard formalism, 

b1 =
@ lnnh
@±l

¡ 1

nh = nh(½m; ¾M );
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Non-Gaussian halo bias

FS & Kamionkowski

● Just a matter of chain rule...
– In standard formalism, 

b1 =
@ lnnh
@±l

¡ 1

) ¢b1(k) =
@ lnnh
@ ln¾M

@ ln¾M
@Á(k)

@Á(k)

@±l(k)

Univ. mass function 
or simulations

Linear 
perturbation 
theory

s.a.

nh = nh(½m; ¾M );
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Non-Gaussian halo bias

FS & Kamionkowski

● Just a matter of chain rule...
– In standard formalism, 

b1 =
@ lnnh
@±l

¡ 1

) ¢b1(k) =
@ lnnh
@ ln¾M

@ ln¾M
@Á(k)

@Á(k)

@±l(k)

Univ. mass function 
or simulations

Linear 
perturbation 
theory

s.a.

= 2fNLM¡1(k) b1±c
¾2!M (k)

¾2M

M(k) =
2

3

k2T (k)g(z)

­mH2
0 (1 + z)= M¡1(k)

nh = nh(½m; ¾M );
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Predictions for ∆b

● Scale-invariant bispectra:
● Examples:

– Local model:

– Equilateral form:

– Folded form:

! ! 1 ) ¾2! = ¾2M ) ¢b1 / k¡2

! / k2 ) ¢b1 ¼ const:

! / k ) ¢b1 / k¡1

!(~ks; ~k) = C (k=ks)
n
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Technical detail

● So far, considered effect of NG on 
● Also have to take into account effect on 

Jacobian

● Yields additional term in ∆b, 

● Order unity effect for non-local types of NG !

º = ±c=¾M

d ln º

d lnM
(since we identify halos by mass, not by ν)

/ @ ln¾2!M (k)

@ lnM

Desjacques, Jeong, FS (2011)
Scoccimarro et al (2011)
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Updated PBS predictions

● Scale-dependent local model

Ratio of simulations / new 
predictions to previous PBS 
prediction

Desjacques, Jeong, FS (2011)
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Updated PBS predictions

● Folded/orthogonal model

Ratio of simulations / new 
predictions to previous PBS 
prediction

Desjacques, Jeong, FS (2011)
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More “interesting” examples...

● Strongly scale-dependent non-Gaussianity
– Due to periodic modulation of, or feature in inflaton 

potential

– Violating “slow-roll”: small effects on P(k), but large 
non-Gaussianity    (in standard single-field inflation !)

Cyr-Racine & FS, 2011

'

V (')
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● Strongly scale-dependent non-Gaussianity
– Due to periodic modulation of, or feature in inflaton 

potential

– Violating “slow-roll”: small effects on P(k), but large 
non-Gaussianity    (in standard single-field inflation !)

● Mode coupling depends strongly on k
s
:

– Scale-dependence as in local model*:

Cyr-Racine & FS, 2011

!(k; ks)
ksÀk= F (ks)

¢b / k¡2

More “interesting” examples...

* Gauge issues in squeezed limit still to be worked out
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Resonant Non-Gaussianity

● Periodic modulation of inflaton potential
– Modes pass through resonance while sub-horizon

–

● Consider models that pass current CMB 
constraints

!(k; ks) / sin (C! ln ks=k¤)

'

V (')

Flauger & Pajer
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Resonant Non-Gaussianity

● ∆b as function of halo mass
– Oscillations in mass-dependence of galaxy clustering 

New term 
from Jacobian 
crucial

k=0.001h/Mpc fixed

Cyr-Racine & FS, 2011

Local model



66

Feature in Inflaton Potential

● Bump or step in the potential generates 
non-Gaussianity
– temporarily breaking slow-roll

–

X. Chen et al

!(k; ks) / sin ks=kf

Scale exiting horizon when inflaton crosses feature

'

V (')

'f
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Feature in Inflaton Potential

● ∆b as function of halo mass
– Feature appears at mass scale 

Enhancement of galaxy 
clustering at 

k=0.001h/Mpc fixed

Cyr-Racine & FS, 2011

M » ¹½m k
¡3
f

M » ¹½m k
¡3
f

Constraints on k
f
 

complementary to 
CMB
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Galaxy clustering in 
relativistic context

● Scale-dependent bias                 raises issue 
of relativistic corrections

● Covariant expression for galaxy density 
(three-form) simplifies in synchronous gauge
– Equal time hypersurface = constant-age 

hypersurface

N =

Z

Vobs

p¡g ng(x®true)
1

a(x0true)

¯̄
¯̄
¯
@xitrue

@xjobs

¯̄
¯̄
¯ d
3xobs

Yoo et al, 2009
Challinor & Lewis 2011
Baldauf et al 2011
Jeong, FS, Hirata 2011

/ (k=H)¡2
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Galaxy clustering in GR

N =

Z

Vobs

p¡g ng(x®true)
1

a(x0true)

¯̄
¯̄
¯
@xitrue

@xjobs

¯̄
¯̄
¯d
3xobs

Volume distortion
Deflection

Intrinsic galaxy density

Tracing back 
perturbed 
geodesic yields

x¹true(x
®
obs)
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Galaxy Bias

● Usually assumed on large scales:
– Linear, local bias

±g(~x) = b ±m(~x)
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Galaxy Bias

● Usually assumed on large scales:
– Linear, local bias

● However, relation is gauge-dependent

– δ
g
 and δ

m
 transform differently:

±g(~x) = b ±m(~x)

¿ ! ¿ + T :
T (~x)

±g = ng=¹ng ¡ 1
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Galaxy Bias

● Usually assumed on large scales:
– Linear, local bias

● However, relation is gauge-dependent

– δ
g
 and δ

m
 transform differently:

±g(~x) = b ±m(~x)

¿ ! ¿ + T :

±m ! ±m ¡ 3aHT

±g ! ±g + beaHT; be =
@ ln ¹ng
@ ln a

Depends on galaxy sample

T (~x)

±g = ng=¹ng ¡ 1



73

Galaxy Bias

● Usually assumed on large scales:
– Linear, local bias

● However, relation is gauge-dependent

– δ
g
 and δ

m
 transform differently:

● In what gauge is galaxy bias linear ?

±g(~x) = b ±m(~x)

¿ ! ¿ + T :

±m ! ±m ¡ 3aHT

±g ! ±g + beaHT; be =
@ ln ¹ng
@ ln a

Depends on galaxy sample

T (~x)

±g = ng=¹ng ¡ 1
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Galaxy Bias

● On large scales, galaxies can know about
– Local matter density

– Local age of Universe (linear growth factor)

Jeong, FS, Hirata 2011
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Galaxy Bias

● On large scales, galaxies can know about
– Local matter density

– Local age of Universe (linear growth factor)

● Hence,            on constant-age slices 
→ synchronous gauge
– Gauge-invariant expression for galaxy density 

perturbation:

±g / ±m

Jeong, FS, Hirata 2011

Perturbation in conf. time 
w.r.t. constant-age slice

±g = b(¿)[±m ¡ 3aH±¿ ] ¡ be(¿)aH±¿
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NG halo bias in GR context

● With NG initial conditions, different areas of 
the Universe at same age have different 
power spectra

Jeong, FS, Hirata 2011
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NG halo bias in GR context

● With NG initial conditions, different areas of 
the Universe at same age have different 
power spectra

● Hence, standard relation,

    with

    applies in synchronous gauge

b(k) = b1 + 2fNL(b1 ¡ 1)±cM¡1(k)

±g(k) = b(k)±m(k)

Jeong, FS, Hirata 2011

(for local NG)
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NG halo bias in GR context

● With NG initial conditions, different areas of 
the Universe at same age have different 
power spectra

● Hence, standard relation,

    with

    applies in synchronous gauge

● Additional terms from volume distortions, 
redshift perturbations, … comparable to 
effective 

±g(k) = b(k)±m(k)

fNL;e® . 2 Jeong, FS, Hirata 2011

b(k) = b1 + 2fNL(b1 ¡ 1)±cM¡1(k) (for local NG)
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NG halo bias in GR context

● Effective f
NL

 from GR corrections

Magn. bias amplitude

Q = 5s=2

Jeong, FS, Hirata 2011
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Other ways to look for NG ?

● Why not lensing ?
– Lots of information in shear maps
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Other ways to look for NG ?

● Why not lensing ?
– Lots of information in shear maps

● Lensing estimators not perfectly linear:

– Lensing power spectra receive contribution from 
primordial NG:

Jeong, FS, Sefusatti 2011

κ bispectrum in squeezed limit
- projection of matter bispectrum

°̂ = ° + b·°+ ::: ·̂=·+ c·2 + d j°2j + :::

¢C··(`) /
Z
d2`1
(2¼)2

B·(`1; j~̀¡ ~̀1j; `) £ (geometric factors)
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NG with Weak Lensing

● Unfortunately, effect is very small...

convergence 

shear

Relative magnitude of contributions to 
lensing power spectra

From tree-level bispectrum 
(gravitational collapse)

From local primordial NG

Jeong, FS, Sefusatti 2011
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NG with Weak Lensing

● Two very basic, generic reasons:

1) Projection favors low redshifts → small scales

Jeong, FS, Sefusatti 2011
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NG with Weak Lensing

● Two very basic, generic reasons:

1) Projection favors low redshifts → small scales

2) Central limit theorem: effect is suppressed by 

Jeong, FS, Sefusatti 2011

¢Â » Gpc

Lp=¢Â

width of projection kernel

1D coherence length of 
matter density fieldLp ´

Z
d2k

(2¼)2
P (k) ¼ 75 Mpc
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NG with Weak Lensing

● Two very basic, generic reasons:

1) Projection favors low redshifts → small scales

2) Central limit theorem: effect is suppressed by 

● These apply to any non-linear tracer of any 
projected density field
– E.g. shear peaks, IR/UV backgrounds, ...

Jeong, FS, Sefusatti 2011

Lp=¢Â
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Summary
● Galaxy clustering offers rich possibilities for 

testing inflation through non-Gaussianity
– Scale-dependent bias: non-trivial k- and M-

dependence

– Complementary to CMB

– NG halo bias on large scales now understood, 
including GR corrections 

– More work needed for smaller scales...

● On the other hand, weak lensing (in itself) is not 
a promising probe of NG

And sorry for not talking about primordial gravity waves...
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